
rI,-

TO APPR: TIS23 AD-A266 931
1 lI fllill Hlll lllH llitl~

Relaxing Consistency in Recoverable Distributed Shared Memory

Center for Reliable and High-Performance Computing
Coordinated Science Laboratory \ I

University of Illinois V
Urbana, IL 61801 b

Abstract memory consistency models have recently been developed
[1,7, 12, 151. These models relax the traditional sequen-

Relaxed memory consistency models tolerate increased tial consistency model to allow copies of data on separate
memory access latency in both hardware and software dis- processors to be tempomrily inconsistent during the com-
tributed shared memory systems. In recoverable systems, putation.
rela;xng consistency has the added ben*ft of reducing the In this paper we show that, in shared-memory computer
number of checkpoints needed to avoid rollback propa- systems which require recoverability from transient node
gation. In this paper, we introduce new checkpointing errors, relaxing consistency has the added benefit of de-
algorithms that take advantage of relaxed consistency to creasing the performance overhead of independent check-
reduce the performance overhead of checkpointing. We pointing and rollback recovery. We present checlpointing
also introduce a scheme based on lazy relaxed consistency, algorithms that take advantage of the conditions for relaxed
that reduces both checipointing overhead and the over- consistency to reduce the minimum number of checkpoints
head of avoiding error propagation in systems with error required for correct operation. We also show how the
latency. We use multiprocessor address traces to evalu- checkpinting scheme reduces the cost of avoiding error
ate the relaxed consistency approach to checkpointing with propagation in systems with lazy relaxed consistency. We
distributed shared memory. use multiprocessor address traces to evaluate the techniques

by trace-driven simulation.

I Introduction
2 Background and Previous Work

Several parallel architectures use distributed shared
memory to avoid the programming complexities of 2.1 Checkpointing in shared memory multipro-
message passing. A distinguishing feature of these ar- cessors
chitectures is the distribution of memory across many pro-
cessing nodes connected by an extensive network, resulting In parallel systems, to ensure a correct global state, a
in high access latency for non-local data. The implem wta- rollback of one process often necessitates the rollback of
tion of such adistributed shared memory can be in hardwar other processes that have communicated with it. Schemes
anx/or softwau. Hardware distributed shared memory where processors globally coordinate checkpoinzmg and
systems have been developed in industry and academia rollback to limit this rollback p on artform well
[34]. All-software implementations that can be used on ex- where checkpoint intervals are relatively Iong[4_5_, Ojbe.4-or -
isting hardwre, including networked workstations, have come morexepensive with shorter intervals. Otherschemes
also been developed by researchers [8, 11. 22, 23]. 7b re- that keep multiple checkpoints per processor to handle
duce the perfonnance impact of remote memory access rollback propagation incur the additional overhead of de-
latency in distributed shared memory systems, relaxed pendency tracking. A more extensive discussion of the :d

tradeoffs involved in the design of recoverable distributed
"ntis wash m• n in pan by *a• Natlwal Aemut systems can be found in the literatmu (13, 19,31].

and Spam Adumismhdn (NASA) undeO GUit NASA NAG 1-613,, In sird-memory systems, processor commumcaae
copemi wid h she lwho Cnpau Laboway for Aaero SymI
and Softwm (ICIA) and by sh Office a Naval Resewd under throlgh shared variables rather than messages. L•ee and..
conamct N00014-91g-1283. Shin proposed hardware recovery blocks for recovery in a --

,,..oi.Jli~ty Cod(

Ava a•• nd/or
Dist Specialspecial

93i-15988il

shared-memory multiprocessor [21]. In their approach, the [A system is sequentially consistent if] the result
detection of rollback propagation necessitates a complete of any execution is the same as if the operations of
restart of the whole task. Ahmed et at. used a flagged co- all the processors were executed in some sequen-
ordinated scheme to reduce the number of processors that tial order, and the operations of each individual
need to participate in cache-based recovery [2]. Banitre processor appear in this sequence in the order
and Joubert proposed a recoverable multiprocessor that specified by its program.
constructs global checkpoints with the help of a central-
ized stable memory device supporting atomic transactions During normal execution, sequential consistency can be
[3]. Tam and Hsu have also worked on reliable distributed guaranteed by requiring processors to issue memory
shared memory, concentrating on recovering the page table accesses in program order, and to wait until the result of a
on a processor that has failed [29]. write access is made known to all processors before issuing

In distributed shared memory systems, synchronized any new accesses. Many commercial shared memory mul-
global checkpointing is more costly than in traditional tiprocessors use processor consistency, a slightly more
shared memory systems. To avoid coordination over- relaxed consistency model [16, 24]. The programer's
head, Wu and Fuchs used independent checkpointing at views under processor consistency and sequential consis-
every communication between processors for cache-based tency are similar, but processor consistency allows the hard-
recovery in bus-based multiprocessors (32] and for recov- ware to pipeline memory accesses.
erable shared virtual memory [33]. Stumm and Zhou also If checkpoints are taken at random times, a rollback on
used a similar communication-induced scheme in their fault a recoverable system may violate sequential consistency.
tolerant distributed shared memory [27]. In the Sequoia In the example of Figure 1, processor A sets variable x =
multiprocessor [6], only data that have been checkpointed 0, followed by x = 1 some time later. Then processor B
can be shared between processors. The schemes pro- reads x twice, storing the results in a and b. An error is
posed in this paper use a similar communication-induced detected by processor A in the time between the two reads
approach, but avoid checkpointing at every processor in- on processor B, causing a rollback to the checkpoint taken
teraction. before the second write. On processor B, the second read

Since checkpointing frequency with communication- of x occurs before the rolled-back processor A reassigns
induced schemes is typically high, they are suited for use x = 1. The outcome is that a = I and b = 0. which, if
with low-overhead state saving methods, based on the cache all operations were executed in sequential order, is only
[2, 32] or virtual memory [9] mechanism. Under these possible if the assignment x = I came before x = 0. This
methods, checkpointing usually consists of saving some is not the order specified by the program on processor A,
registers and updating a counter. We assume that such a therefore sequential consistency is violated. If x were a
checkpoint can be committed immediately after a processor lock variable, processor B would be able to acquire the
event, without the possibility of any intervening error. Un- lock, even though it was actually reserved by processor A.
less assisted by a reconfiguration mechanism, our schemes To avoid the situation described, processor B could
only allow recovery from a single transient error in one follow processor A in rolling back to a mutually consistent
of the processing nodes. The types of errors that can be stateM This strategy, however, would require coordination
handled depend on the exact state saving method used; the between processors during checkpointing. Tb avoid the
cache-based schemes are restricted to transient processor overhead of coordination, a processor should not roll back
errors, while the virtual memory schemes can potentially past a write to a value that has been read by another pro-
recover from a crash of a complete processing node. cessor. A processor could take a checkpoint immediately

2.2 Sequential consistency and checkpointing - x -1

Previous work on recovery in shared-memory coin- u
puter systems has assumed a sequential consistency model, checkpoint error detected
which guarantees that all memory accesses appear to exe-
cute atomically and in program order [20, 24]. The model B a-i
was developed to reflect the programmer's intuitive under-
standing of thecorrect execution ofa multiprocessor. Ifse- a =x b . xb-

quential consistency is not maintained, synchronization and
mutual exclusion using loads and stores to lock variables Figure 1: A violation of sequential consistency caused by
will not necessarily function correctly. Lamport defined a rollback past the read of a shared variable by a remote
sequential consistency as follows [20]: processor.

after every write, but then non-shared data would be unnec- Borrmann and Herdieckerhoff first proposed lazy relaxed
essarily checkpointed. A better strategy is to checkpoint the consistency to reduce the number of messages sent be-
writer of a data item immediately after servicing a request tween processors in a software distributed shared memory
from a remote processor to read that item [32, 33]. During system [7]. Keleher et al. showed with simulations that
recovery from an error, all reads from other processors must the performance of release consistency can be improved by
be delayed until the affected processor has rolled back to a implementing lazy release consistency (181.
correct state. No known previous work has taken advantage of gen-

The overhead for this checkpointing scheme on a se- eral relaxed consistency to reduce the performance impact
quentially consistent system is high. A checkpoint is taken of checkpointing and rollback recovery. Some less gen-
on every instance of communication between processors, eral and more restrictive consistency models have been
leading to an unavoidably high checkpoint frequency [17]. used in database and transaction processing applications.
If a read request from a remote processor occurs during An extension to the Mirage shared virtual memory system,
rollback, the requesting processor needs to stall until the which uses a time-based coherence approach, has been
sending processor has completed recovery, proposed to make it recoverable (14]. The Sequoia mul-

tiprocessor [6]. designed for transaction processing, uses
2.3 Relaxed consistency a model similar to weak consistency to decrease check-

pointing frequency. The current state is kept in the cache,
Recently it has become clear that strong consistency re- which is flushed to main memory upon every acquire and

quirements prevent systems designers from making certain release of a lock. The caches are not kept consistent be-
performance optimizations. By using a more relaxed con- tween lock access. Although it can be accessed by user
sistency model, accesses to remote memory locations ca,, processes, Sequoia's shared memory is intended mainly for
be delayed and reordered, increasing performance. One use by the operating system kernel.
relaxed consistency mode] is weak consistency, where the
following conditions hold (1, 12, 24]:

1. accesses to synchronization variables are sequentially 3 Checkpointing with Relaxed Consistency
consistent,

2. no access to a synchronization variable is issued in a The condition! that allow a relaxed consistency system

processor before all previous data accesses have been to appear sequentially consistent also allow a reduction in
performed. the number of checkpoints taken for recovery. If a program

is data-race-free, a read of a data value by a remote pro-
3. no access to global data is issued by a processor before cessor is always separated from the write of that value by

a previous access to a synchronizing variable has been a write and subsequent read by the remote processor of a
performed, synchronization variable. Figure 2 presents an example,

It is difficult to write and debug parallel programs that where a read of data item x by processor B is separated

conform to the weak consistency model without addi- from the last write to that item on processor A by a write

tional constraints. However, Adve and Hill showed that by processor A and read by processor B of synchronization

a weakly consistent system appears sequentially consistent variable s. A processor is guaranteed to never roll back

to a program as long as the program contains no data races past the write of a data item that is subsequently read by

and all synchronization accesses are visible to the memory another processor if it can not roll back past the write to the

system [I]. A data race occurs when two data operations intervening synchronization variable.

on different processors access the same memory location, We present two schemes for low-overhead check-

they am not both reads, and they are not ordered by a
synchronization operation. It can be shown that for other W(x) W(s) checkpoint RCI
relaxed consistency models, such as release consistency A I_ h
[15], similar conditions of visible synchronization accesses I]
and data-race-free execution provide a sequentially consis- checkpoint RC2
tent interface to the program. sync

Hardware that uses relaxed consistency has been devel- B
oped by several researchers and implemented in the Stan-
ford DASH multiprocessor prototype (15]. Many soft- R(s) R(x)
ware distributed shared memory systems allow a user-
controlled relaxing of sequential consistency [8, 11, 23]. Figure 2: Checkpointing under the data-race-free model.

pointing with relaxed consistency, differing in the place- RC3, which checkpoints immediately after the use of these
ment of checkpoints. Though the schemes are designed synchronization primitives. A checkpoint is taken imme-
to work most efficiently with state-saving methods based diately after both the setting and unsetting of a lock. A
on the virtual memiory or cache (described in Section 2.1), checkpoint also needs to be taken by each participant im-
they can be used with any other method. Rollback occurs mediately after passing a barrier used for synchronizing
completely independently on the affected processor, the multiple processes.
other processors continue with the computation.

The first scheme, hereafter called RCI, uses a write-
invalidate coherence protocol, where a write to a shared 4 Handling Error Latency with Lazy
data item causes invalidation of all copies of that item on Relaxed Consistency
othe processo. To guarantee correct rollback, the source
processor is checkpointed only on reads by remote pro- 4.1 Error latency and error propagation
cessors of synchronization variables. In the example of
Figure 2, a checkpoint is taken after the read of s by pro-
cessor B. This ensures that processor A will never roll back Work in the area of error recovery often assumes thatpast the last write to data item x. Scheme RCI reduces errors are detected uimmediately and cause the affected pro-

pastthelas wrte t daa iem . ScemeRCIredces cessor to stop [2, 19, 26, 31, 33j. In practice, tho overhead
unnecessary checkpoints by checkpointing only writes to error tosmp [,92331 bn actice the overha
synchronization variables that are subsequently used to or- of error detection may be reduced by allowing some latency
der accesses on other processors. between an eror and its detection. Even a few cycles of

An alternative scheme is RC2. Here a checkpoint is detection latency can dramatically improve perfopmanc,
taken immediately after every write to a synchronization by taking error detection hardware out of the critical path
variable, even if it is not read on another processor before [30]. If an erorn is still undetected when a checkpoint is
the next write. Therefore the number of required check- taken, the checkpoint is corrupted. Wu e at. proposedpoints might be higher than in RCI. However, RC2 can be a two-Phase checkpointing scheme to solve this problem
appieds wigte-upe pigherotocols, win ch bowerod cast the n[32]. This solution, however, does not avoid the propaga-app lied w rite-u pdlate protocols, w hich broadcast the new i n o an e r r w n an nc r ct v l e s su p ed o a
values of updated shared data. In Figure 2, scheme RC2 tion of an error when an incorrect value is supplied to a
requires a checkpoint after the write to synchronization remote processor before the error is detected.
variable s on processor A, ensuring that processor A will avoid propagating e it is necessr to ensure
never roll back past the last write to data item x. the validity of data before supplying them to any other

Whether scheme RCI or scheme RC2 is used, accesses processor. Assuming the error latency is bounded, this

to shared data variables never need to be checkpointed. validation could be accomplished by various methods. A

Therefore the checkpointing overhead is reduced. Further local mechanism in the processor could ensure that the

decrease in checkpointing overhead can be accomplished requested data item has not been updated for a time period

by avoiding the use of shared memory for synchroni- equal to the emror latency. For instance, the processor could

zation. Especially in software distributed shared memory cease computation and wait for a time period equal to the

systems, synchronization through shared memory is expen- error latency before supplying the value. This method is

sive. Many systems therefore implement synchronization very costly when error latency is high, and is therefore

primitives through message-passing [7, 11]. Contention best suited for systems with low-latency error detection

for locks, and the resulting invalidations and data transfer, hardware [30].

can then be avoided. For these systems we propose scheme Validation is needed both before the taking of every
checkpoint, and before a response to a read request. In a
sequentially consistent system, these events always occur

computation together, leading to the order represented in Figure 3. Comn-
cI re.adequest putation ceases as soon as the read request is received. Then

validation occurs to prevent both the propagation of errors
sat in servicing the request and the corruption of the following
validation checkpoint. Then the remote read request is serviced, fol-
val-dat data n lowed by the immediate commit of the checkpoinL The

I Icheckpointing process may have been initiated earlier, but
computation the checkpoint has to commit atomically with the sending

of the data before restarting computation.
Figure 3: State validation and checkpointing during the With scheme RCI, checkpointing occus only on syn-
handling of a remote read request. chronization reads from remote processors. However, vali-

4

dation still needs to occur as often as under sequential con- computation • I
sistency: on every read fromaremoteprocessor. Therefore, t Lsync. write
the perfonnance advantage of using relaxed consistency is
reduced. With scheme RC2 and a write-invalidate policy, state

the validation overhead is even greater. In this case, com- validation remote update
municanion and checkpointing occur at different times, and 310
both need validation. checkpoint

The performance overhead of state validation is exacer- computation
bated by the need for the processor that issued a remote read
request to stall during the validation period, waiting for the Figureoi: State validation and che.cpointing during a syn-
requested data to be released by the sender. Furthermore, onization wrte and remote update.
if an error detected during validation causes a rollback, the
requesting processor may not continue until the rollback Lazy relaxed consistency is convenient for rollback re-
completes. covery with error latency since error propagation can be

constrained to write propagations. Tb achieve this, we de-
4.2 Lazy Relaxed Consistency scribe scheme LRC2. A checkpoint is taken after every

write to a synchronization variable, as in scheme RC2.
Relaxing consistency alone does not decrease the over- A write-update coherence protocol is used where all the

head of avoiding error propagation. A technique called updates are performed in one message after a write to a
lazy relaxed consistency, however, minimizes pocesor synchronization variable. Errors can be propagated only
communication, thereby reducing the number of required during these updates. In the example of Figure 4 an error
computation state validations. With lazy relaxed consis- on processor A at point p can not propagate to processor B
tency, propagation of newly written values is postponed until the next write to a synchronization variable. There-
until absolutely necessary [71. As long as synchronization fore the error at p will never propagate to a read at point
writes ame used to order accesses, it is only necessary to up- r.
date other processors with the results of all previous writes In scheme LRC2, a state validation and checkpoint occur
when a synchronization variable is written [11. This de- immediately after a write to a synchronization variable.
layed propagation strategy increases the performance of Figure 5 explains the sequence of events. After a synchro-
software distributed shared memory by reducing both the nization write, computation stops and the computation state
number of messages and the amount of data exchanged is validated. Then a remote update message is sent to all
[18]. other processors. After the send, a checkpoint is taken to

Figure4 presents an example of the messages exchanged prevent the processor from a subsequent rollback past the
under lazy relaxed consistency. Each dashed arrow repre- remote update.
sents an update to a synchronization variable and a resulting Lazy relaxed consistency protocols already send
write propagation. For simplicity only one variable, x, is messages to update data at every synchronization points, so
written on processor A. The thin arrows indicate the value synchronization by message-passing can be easily imple-
of x that would be returned by a read on the processo. Pro- merited. Scheme LRC3, similar to RC3, can then be used.
cessor B only sees the updates to x after a write propagation Checkpoints occur in the same instances as in scheme RC3.
from processor A. Every checkpoint is accompanied by a preceding state val-

idation.

x-i x=2
x - x-2 5 Simulation Results and Implementation

A I Issues

B The total overhead of the proposed schemes depends
, on the number of necessary checkpoints, the overhead per
r checkpoint, the number of required computation state val-

x 0= x =2 idations, and the overhead per validation. Table 1 summa-
rizes the various schemes, and gives expressions for their

Figure 4: Values seen on processors using lazy relaxed overhead, both with and without error latency.
consistency. We evaluate the alternative checkpointing schemes with

Table 1: Overhead of proposed schemes.

i ewhen necessary -overhead
Sceckpoints validations no error latency, error latency

SC all reads by remote all reads by remote rrC rr*(V-+-C)
_p roe sso processors

RCI reads of sync. vars all reads by remote srrC rr*(V-+-C)
by remote procs. processors

RC2 writes to sync. vats. all reads by rem. procs. swC rr*V+sw*(V+C)
writes to sync. vts

RC3 sync. events all reads by rem. procs. se*C rr*V+se*(V+C)
I_ I sync. events

LRC2 writes to sync. vats. writes to sync. vars 8W • C aw (V + C)
LRC3 sync. events sync. events Ae- se* (V + C)

"rr: number of reads by remote processors C: overhead for one checkpoint
arr: number of reads of sync. vas by remote procs. V: overhead for one validation
aw: number of writes to sync. vars
se: number of synchronization events

Table 2: Address trace characteristics.

references total jwe total jshared
gravsim(5] N-body simulator 92,178,814 33,266,880 12,484,455 6,392,078 251,694
fsim[25] fault simulator 149,918,375 50,950,933 39,326,911 3,958,919 999,127
tgen(251 test generator 101,264,382 32,613,809 16,550,450 4,461,889 642,796
pace[4] cicuit extractor 87,861,165 23,766,576 1,286787 7,842,338 348,524
phigure[10] global router 132,998,231 38,244,233 4,281,207 11,530,981 1,876,400

results from simulations based on multiprocessor traces tial consistency amounts to one state validation and one
from five parallel scientific programs running on an Encore checkpoint per read by a remote processor of a shared vari-
Multimax. The Multimax is a bus-based multiprocessor, able. Depending on the amount of sharing in the programs,
supporting up to 20 processors. The traces are from ex- reads by remote processors represent 400 to 4000 of every
ecution on seven processors, and each contain at least 80 million accesses, or around 2600 on the average. Using
million memory references (17,28]. Table 2 describes the the data-race-free programming model and scheme RCI,
characteristics of the traces used. most checkpoints can be eliminated but state validations

The programs available for tracing were specifically still occur on all reads by remote processors. Figure 6

written for a tightly-coupled multiprocessor environment, shows that reads of s-ymchronization variables by remote

In this environment, interprocessor communication and Iocesors add up to only 50 to 1000 occurrences per mil-

synchronization are not as costly as in a distributed shared lion references, with an average of approximately 400.

memory environment. The programs thereore contain Alternatively, RC2 orLRC2 can be used to take a check-
more synchronization overhead than they would if opts- point after every write to a synchronization variable. Syn-
mized for distributed shared memory. We therefore expect chronization writes occur more often than reads of a syn-
an actual implementation to exceed the mefos im- c on variable by a remote processor. For instance,
provements predicted by the simulations. when there is no contention for a lock, it is written twice

Figure 6 presents the frequency of various events of (once to lock, and once to unlock) before possibly being
interest for the five programs. The overhead under sequen- acquired by another processor. Our results show an av-

4000

reads by remote processors (block size is bour bytes)

3 reads of synchronization vars. by remote processors

we to syncwonezaton variableso n i e
C synchronization evontse

1 2000

I 1000

0 F

Wavsurn faimn tgen Pac O~gg" aVerag
Pmogron

Figure 6: Events significant to checkpointing overhead for the five individual programs.

erage frequency of writes to synchronization variables of virtual memory systems is 4 kilobytes. In Figure 7, the
about 600 per million references. Implementing synchro- average frequency of reads by remote processors is plotted
naLron with message passing (Rn o and LR lo) further against block size. As expected, false sharing and spatial
reduces the number of checkpoints required. Any writes locality intract, creating an optimal block size of 64 bytes
to synchronization variables during contention for a lock to minimize reads by remat processors. Reads of blocks
are eliminated, and one checkpoint suffices per synchro- with synchronization variables by remote processors, on
nization event. Figure 6 shows an average frequency of the other hand, continuously increase from an average of
approximately 500 synchronization events per million ref- around 400 per million for four-byte blocks to arouind 1700
erences. per million for four-kilobyte blocks. But the number of

Fromthedat inFigue 6it ppers mre esiabl to writes to synchronization variables and the number of syn-From the data in Figure 6 it appear more desirable to nzto evtsdnodpndnblcsi.Fral
checkpoint on every read of a synchronization variable by blocizes, exept th e unralick size of f y c

a remote processor rather than on every write to a synchro- block sizes, except the unrealistic size of four bytes, check-

nization variable. However, the frequency of reads of vari- pointing after writes outperforms checkpointing after reads

ables by remote processors depends on the implementation by remote processors.

of the distributed shared memory system. Interprocessor
communication usually occurs in blocks or pages. It is 6 Conclusions
necessary to checkpoint the source after a read by a remote
processor of every block containing a synchronization vari- In distributed shared memory systems, the overhead
able. A larger block size causes different variables to be of checkpointing and rollback recovery is increased by
transferred between processors as a unit. Spatial locality, the need to handle rollback propagation. Unsynchro-
the tendency to reference variables in the same block as nized checktpointing eliminates coordination overhead, but
recently referenced variables, might decrease reads by re- is costly in the number of checkpoints that are needed to
mote processors. However, false sharing, where different ensure that the ordering of memory accesses does not vi-
variables in the same block are needed by different pro- olate sequential consistency. Under relaxed consistency
cessors, might increase reads by remote processors. Syn- models, only accesses to synchronization variables need
chronization variables are not usually accessed as a group, to be strongly ordered. In this paper, we proposed new
and therefore have very low spatial locality. False sharing, techniques that take advantage of this relaxed model to
with other synchronization variables or with data variables, reduce the checkpointing overhead. Results from trace-
therefore increases the number of reads of synchronization driven simulations show a five- to ten-fold decrease in
variables by remote processors as the block size gets larger checkpointing overhead over previous techniques that re-

Distributed shared memory systems use a wide range of quire sequential consistency.
block size. A typical block size for hardware implemen- Lazy relaxed consistency allows delaying interprocessor
tations is 16 bytes, while a typical block size for shared communication until absolutely necessary for correct exe-

400

4000 - - - reaft by reemcle procssaou-

I - ~~~reeds of syndrorAzIon vem. by mnci. processoms--
300 wvli" to s)¶lctwonizAl~on vmatdIss -

-- syrchwhnizmln .vwuN

11000

4 16 64 256 1 k 4k
block mins (bytes)

Figure 7: Events significant to checkpointing overhead versus blocksie

cution. Updatesto shaed datecan be bundledand trasmit- Pnoc. 20th Int. Symp. on Fault-Tolerant Computing,
ted at synchronization points. Ibis decrease the number of 1990, pp. " .-88
messages exchaniged and generates a communication pat [3] M. Banhtre and P. Joubert, "Cache management in a
tern similar to tha of explicit message passing. We toktightl coupled fault tolerant multiprocessor," Proc.
advantage of these properties of Lazy relaxed consistency
to reduce the overhead of avoiding ermo propsagation in 20th Irt. Symp. on Fault-To! rant Computing, 1990,
systems with unsynchronized checkpointing. We expect pp. 89-96.
the communication properties of lazy relaxed consistency [4] K. P. Belkitale, Parallel Algorithms for Computer-
to be useful in implementing other recovery algorithms as Aided Design withApplicationsto Circuit Extraction,
well. Pht. D. Thesis, Tech. Report CRHC-90-15, Univ. of

Illinois, Urbana, IL, Nov. 1990.

Acknoledgeants(5] M. Bellon, "Parallelizing gravitational N-body algo-
Acknoledgeentsrithms on MIMD architectures," Motorola Urbana

Lothar Borrmann and the Software Architecture for Par- Dsgn Cetr tbana, IL.
allel Computers group in the Systems Architecture Division [61 P. A. Bernstein, "Sequoia: a fault-tolerantitightly cou-
at Siemens Corporate R&D, Munich, Germany, suggested pled multiprocessor for transaction processing," Comn-
many of the initial ideas on distibuted shared memory puter, Xblol,2,No. 2, Feb. 1988, pp. 37-45.
used in this paper. At Illinois, Paul Chen, Shyh-Kwei [7 L Borrmann and M. Herdieckerhoff, "A coherency
Chen, Antoine Mourad, and Yfi-Min Wang provided useful model for virtually shared memory," Proc. Int. Conf.
comments. Thanks also to Krishna Prasad Belkhale, Mark o aallPoesn,19,p.U221-5
Beilon, Randy Brouwer. and Sninivas Patil for the programs o aallPoesn.19,p.l-5--S
that were trwed to generate the simulation results. [8] L Borrmann and P. Istavrios, "Store coherency in a

parallel distributed-memory machine," Proc. 2nd Eu-
ropean Distributed Memory Computing Conf.. 1991

References (published by Springet-Ve1ag as Lecture Notes in
Computer Science No. 487), pp. 32-Al.

[1] S. V. Adve and M. D. Hill, "Weak ordering-a neCw [9] N. S. Bowen, D. J. Pradhan, "Viruval checkpoints:
definition," Proc. 17th Int. Symp. on Computer Arc hi- architecture and performance," IEEE Trans. on Coin-
tecture. 1990, pp. 2-14. puters, Vol. 4 1, No. 5. May 1992, pp. 516-525.

[2] R. E. Ahmed, R. C. Frazier, and P. N. Marinos, (101 R. J. Brouwer and P. Banerjee, "PIUGURFE a par-
"Cacheaided rollback mwo recovery (CARER) algo- ailel hierarchical global router," Proc. 27th Design
rititms for shared-memory multiprocessor systemsn," Automation Conf.. 1990, pp. 650-653.

[11] J. B. CarW, J. K. Bennett, and W. Zwaenepoel, "Im- [23] R. G. Minnich and D. J. Farber, "Reducing host
plementation and performance of Munin,"Proc. 13th load, network load, and latency in a distributed
ACM Symp. on Operating Systems Principles, 1991, shared memory," Proc. 10th Int. Conf. on Distributed
pp. 152-164. Systems, 1990, pp. 468-475.

(12] M. Dubois, C. Scheurich, and F. Briggs, "Memory [24] D. Mosberger, "Memory consisitency models," ACM
access buffering in multiprocessors," Proc. 13th Int. Operating Systems Review, Vol. 27, No. 1, Jan. 1993,
Symp. on Computer Architecture, 1986, pp. 434-442. pp. 18-26.

[13] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, (25] S. Patil, Parallel Algorithmsfor Test Generation and
"The performance of consistent checkpointing,"Proc. Fault Simulation, Ph. D. Thesis, Tech. Report CRHC-
11thSymp.onReliableDistributedSystems, 1992,pp. 90-12, Univ. of Illinois, Urbana, IL, Sep. 1990.
39-47.

[26] R. D. Schlichting and F. B. Schneider, "Fail-stop pro-
[14] B. D. Fleisch, "Reliable distributed shared memory," cessors: an approach to designing fault-tolerant com-

Proc. 2nd IEEE Workshop on Experimental Dis- puting systems," ACM Trans. on Computer Systems,
tributed Systems, 1990, pp. 102-105. Vol. 1, No. 3, Aug. 1983, pp. 222-238.

[15] K. Gharachorloo et al., "Memory consistency and [27] M. Swmm and S. Zhou, "Fault tolerant distributed
event ordering in scalable shared-memory multipro- shared memory," Proc. 2nd IEEE Symp. on Parallel
cessors," Proc. 17th Int. Symp. on Computer Archi- and Distributed Processing, 1990, pp. 719-724.
tecture, 1990, pp. 15--26. [28] C. B. Stunkel, B. Janssens, and W. K. Fuchs, "Address

(16] J. R. Goodman, "Cache consistency and sequetial tracing of parallel systems via TRAPEDS,"Micropro-
consistency," Tech. Report 61, SCI working group, cessors and Microsystems, Vol. 16, No. 5, 1992, pp.
March 1989 (also available as U. of Wisconsin Dept. 249-261.
of CS Tech. Report 1006).

[29] V.-O Tam and M. Hsu, "Fast recovery in distributed
[17] B. Janssens and W. K. Fuchs, "Experimental evalu- shared virtual memory systems," Proc. Oth mt. Conf.

ation of multiprocessor cache-based error rovery," on Distributed Computer System, 1990, pp. 38-45.
Proc. Int. Conf. on Parallel Processing, 1991, pp.
1-505-1-508. [30] Y. Tamir and M. Tremblay, "High-perfomnanct fault-

tolerant VLSI systems using micro rollback," IEEE
[18] P. Keleher, A. L Cox, and W. Zwaenepoel, "Lazy Trans. on Computers, Vol. 39, No. 4, Apr. 1990, pp.

release consistency for software distributed shared 548-554.
memory," Proc. 19th Int. Symp. on Computer Archi-
tecture, 1992, pp. 13-21. [31] Y.-M. Wang and W. K. Fuchs "Optimistic message

logging for independent checkpointing in a message-[1Q] P. Koo0 and S. Toueg, "Checkpointing and rollback- proing system," Proc. 11th Syrup. on Reliable Dis-

recovery for distributed systems," IE.EE Trans. on psing system, 192c. 147-154.

Software Engineering, Vol. SE-13, No. 1, Jan. 1987, tributed Systems, 1992, pp. 147-154.

pp. 23-31. (321 K.-L Wu, W. K. Fuchs, and J. H. Patel, "E'ror re-

[20 L. Lamport, "How to make a multiprocessor computer overy in shared memory multiprocessors using pri-
that caorrectly executes make a mu sprogramso "oputEr rvate caches," IEEE Trans. on Parallel and Distributedthat correctly executes multiprocess programs," IEE System, Vol. 1, No. 2, April 1990, pp. 231-240.

Trans. on Computers, Vol C-28, No. 9, Sep. 1979, pp.

690-691. [33] K.-L Wu and W. K. Fuchs, "Recoverable distributed

[21] Y.-H. Lee and K. G. Shin, "Design and evaluation of a shared virtual memory," IEEE Trans. on Computers,

fault-tolerant multiprocessor using hardware recovery Vol. 39, No.4. Apr.1990, pp.460-469.

blocks," IEEE Trans. on Computers, Vol. C-33, No. [34] G. Zorpee, "The power of parallelism," IEEE Spec-
2, Feb. 1984, pp. 113-124. trum, Vol. 29, No. 9, Sep. 1992, pp. 28-33.

(22] K. Li and P. Hudak, "Memory coherence in shared
virtual memory systems," ACM Transactions on
Computer Systems, Vol. 7, No. 4, Nov. 1989, pp.
321-359.

